в чем сущность хромосомных мутаций

Научная электронная библиотека

file 5d062c0bd3173

Юров И. Ю., Ворсанова С. Г., Воинова В. Ю., Чурносов М. И., Юров Ю. Б.,

3.5. Вариации генома человека: хромосомные мутации

Хромосомные (геномные) мутации (аномалии) связаны либо с различными структурными перестройками хромосом, либо с изменением их числа (n). Численные изменения в наборе хромосом (кариотипе) могут быть двух типов: полиплоидии – умножение полного хромосомного набора (3n, 4n и т. д.) или генома, кратное гаплоидному числу хромосом; анеуплоидии – увеличение или уменьшение числа хромосом в наборе, некратное гаплоидному. Эти количественные изменения кариотипа обусловлены, как правило, нарушениями мейоза или митоза. Численные хромосомные аномалии в виде анеуплоидии делятся на моносомию (потерю хромосомы или её части – частичная моносомия) и трисомию или полисомию (приобретение одной/нескольких хромосом или её части – частичная трисомия). Данные изменения кариотипа связаны с комплексом врождённых пороков развития и, как правило, с заболеваниями, сопровождающимися умственной отсталостью или тяжелыми психическими расстройствами. В настоящее время описаны случаи изменений хромосомного набора с участием половых хромосом и некоторых аутосом при шизофрении и аутизме. Например, до 5–15 % детей с аутистическими расстройствами имеют хромосомные аномалии. Это позволяет рассматривать хромосомный дисбаланс клеток организма в качестве одной из возможных причин отдельных случаев нервных и психических болезней.

Структурные изменения могут затрагивать всю хромосому, а также сопровождаться изменением количества генетического материала в ядре или его перемещением. Сбалансированные хромосомные аномалии представляют собой перестройки, за счет которых выявляется кариотип с измененным набором расположения генов в пределах хромосом или между хромосомами, который отличается от нормального кариотипа. В большинстве случаев носители сбалансированных хромосомных аномалий фенотипически нормальны, но для их потомства возникает большой риск иметь несбалансированный кариотип. Следует отметить, что в отдельных случаях носители сбалансированного кариотипа могут иметь различные врождённые пороки и/или микроаномалии, а также нарушения нервного и психического развития. Если при структурных хромосомных мутациях наблюдается потеря или приобретение генетического материала, то они являются несбалансированными хромосомными аномалиями.

Цитогенетически структурные хромосомные перестройки классифицируют по принципу линейной последовательности расположения генов: делеции (потеря хромосомных участков), дупликации (удвоение хромосомных участков), инверсии (перевертывание на 180° относительно нормальной последовательности хромосомных участков), инсерции (вставки хромосомных участков) и транслокации (изменение расположения хромосомных участков). В последнее время в литературе хромосомные микроаномалии и перестройки могут обозначаться, как геномные.

Изменения генома (хромосом), приводящие к редким заболеваниям, могут включать как крупные микроскопически видимые перестройки (более 5 млн пн), так и вариации числа копий последовательностей ДНК (CNV) и однонуклеотидные полиморфные изменения последовательности ДНК (SNP). Как уже было сказано выше, в настоящее время для определения причины заболевания на геномном уровне используются различные технологии, наиболее распространенными из которых являются полногеномные методы, в частности, молекулярное кариотипирование (arrayCGH). Однако степень патогенности выявленных вариаций генома можно установить только при помощи использования инновационных биоинформатических технологий. Большой массив информации, собранный на интернет-ресурсах, позволяет уточнить функциональные особенности (онтологию) как отдельного гена, так и целой генной сети за счёт анализа последовательности кодируемого белка и моделирования молекулярных процессов, инициированных геномным изменением.

Таким образом, с хромосомными болезнями связаны аномалии микроскопически видимых численных или структурных нарушений хромосом, геномные же болезни связаны как с микроаномалиям хромосом, так и с вариациями числа копий последовательностей ДНК (CNV). С внедрением в клиническую практику современных высокоразрешающих молекулярных методов исследования генома появилась возможность выявлять вариации генома размером от 100 пн, мозаицизм низкого уровня и участки потери гетерозиготности. Размеры перестроек могут варьировать от тысячи до нескольких миллионов пн. При «крупных» перестройках в генонасыщенных участках может быть охвачено от нескольких десятков до нескольких сотен генов. В случае если перестройка небольшого размера и затрагивает область внутри одного или нескольких генов, её называют интрагенной. Как и в случае других типов генетических мутаций, некоторые CNV передаются по наследству, но большинство патогенных аномалий возникают de novo. Как было отмечено выше, структурные вариации генома можно разделить на рекуррентные (часто встречающиеся в популяции, предположительно непатогенные) и нерекуррентные (редко встречающиеся перестройки). Хотя последствия большинства CNV остаются неизвестными, появляется всё больше доказательств того, что генетические нарушения при наиболее распространённых психических и неврологических нарушениях включают в себя различные типы как часто встречающихся, так и редких генетических вариаций. Отдельное внимание стоит уделить биоинформатическому анализу (см ниже), который используется для интерпретации данных, полученных при молекулярном кариотипировании. С использованием данного подхода к анализу полученных молекулярно-цитогенетических результатов можно проводить приоритизацию генов-кандидатов и процессов, лежащих в основе развития патологии.

Большое значение имеет изучение хромосомных мутаций под действием факторов внешней среды. Показано, что хромосомы человека отличаются высокой чувствительностью к действию радиации и химических веществ, которые принято называть мутагенными факторами (мутагенами). При анализе воздействия этих факторов следует различать нарушения в соматических и половых клетках. Первые затрагивают непосредственно жизнедеятельность исследуемого организма, тогда как вторые проявляются в последующих поколениях. Мутации хромосом в зародышевых клетках ведут к образованию аберрантных гамет, в результате которых возможна гибель зигот, эмбрионов на ранних стадиях внутриутробного развития, а также рождение детей с специфическими хромосомными аномалиями, которые проявляются в виде определенной клинической картины или определенного фенотипа. Мутации хромосом в соматических клетках ведут к образованию неспецифичных хромосомных аномалий в виде хромосомных или хроматидных пробелов, разрывов, обменов в кариотипе, не ведущих к определенному фенотипу, характерному для конкретного наследственного заболевания. Подобные мутации не наследуются. Следует отметить, что при изучении такого рода воздействия мутагенных факторов представляется возможным оценить качественно и количественно действие ионизирующей радиации, химических веществ, вирусов, но полученные данные не могут быть перенесены на половые клетки, где результатом действия являются специфические хромосомные аномалии, влияющие на фенотип.

Хромосомные аномалии могут проявляться в так называемых мозаичных формах, к которым приводит неправильное деление клеток на различных стадиях эмбрионального и постнатального развития. Это позволяет разделить хромосомные аномалии на мозаичные и регулярные (аномальный кариотип наблюдается во всех клетках организма). Хромосомный мозаицизм представляет собой наличие нескольких популяций клеток с различным друг от друга хромосомным набором. Как правило, при мозаичных формах хромосомных аномалий наблюдают отсутствие отдельных клинических признаков определенного хромосомного синдрома и более легкое течение заболевания, но некоторые симптомы практически всегда присутствуют. Мозаичные структурные хромосомные аномалии наблюдаются достаточно редко, поэтому, когда речь идет о мозаичных хромосомных аномалиях, имеются в виду, в основном, численные аномалии, мозаичные формы которых имеют достаточно высокую популяционную частоту. Следует также отметить феномен тканеспецифического хромосомного мозаицизма, когда клетки с аномальным хромосомным набором присутствуют только в определенной ткани организма.

Источник

natural history mini

book scienceforum mini

2003 image001

Znak natc konkurs

diplom ruk big

Spivak

image 2003 5 600

image 2003 4 200

ХРОМОСОМНЫЕ МУТАЦИИ И ВЫЗЫВАЕМЫЕ ИМИ БОЛЕЗНИ

Хромосомные мутации (по-другому их называют аберрациями, перестройками) – это непредсказуемые изменения в структуре хромосом. Чаще всего они вызываются проблемами, возникающими в процессе деления клетки. Воздействие инициирующих факторов среды – это еще одна возможная причина хромосомных мутаций.

Мутации могут быть:

Внутрихромосомные – преобразование генетического материала в пределах одной хромосомы.

Межхромосомные – перестройки, в результате которых две негомологичные хромосомы обмениваются своими участками. Негомологичные хромосомы содержат разные гены и не встречаются в процессе мейоза.

Точные причины хромосомных мутаций в каждом конкретном случае нельзя назвать определённо. Вообще мутации ДНК являются инструментом естественного отбора и непременным условием эволюции. Они могут иметь положительное нейтральное или отрицательное значение и передаются по наследству. Все мутагены, способные приводить к изменениям в хромосомах, принято делить на 3 типа:

биологические (бактерии, вирусы);

химические (соли тяжёлых металлов, фенолы, спирты и другие химические вещества);

физические (радиоактивное и ультрафиолетовое излучение, слишком низкие и высокие температуры, электромагнитное поле).

Могут возникать и самопроизвольные хромосомные перестройки, без воздействия ухудшающих факторов, но такие случаи крайне редки. Происходит это под влиянием внутренних и внешних условий (так называемого мутационного давления среды). Такая случайность приводит к изменению генов и их новому распределению в геноме. Дальнейшая жизнеспособность организмов с возникшими изменениями определяется возможностью приспособления к выживанию, что является частью естественного отбора. Для человека, к примеру, мутационные процессы часто становятся источником различных наследственных болезней, порой несовместимых с жизнью.

Виды хромосомных мутаций

Внутрихромосомные мутации

Делеция — утрата одного из участков хромосомы (внутреннего или терминального), что может стать причиной нарушения эмбриогенеза и формирования множественных аномалий развития (например, делеция в регионе короткого плеча хромосомы 5, обозначаемая как 5р-, приводит к недоразвитию гортани, ВПР сердца, отставанию умственного развития). Этот симптомокомплекс обозначен как синдром кошачьего крика, поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье.

Инверсия — встраивание фрагмента хромосомы на прежнее место после поворота на 180°. В результате нарушается порядок расположения генов.

Дупликация — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по короткому плечу хромосомы 9 приводит к появлению множественных ВПР, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Межхромосомные аберрации — обмен фрагментами между негомологичными хромосомами. Они получили название транслокаций. Различают три варианта транслокаций: реципрокные (обмен фрагментами двух хромосом), нереципрокные (перенос фрагмента одной хромосомы на другую), робертсоновские (соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч, в результате образуется одна метацентри-ческая хромосома вместо двух акроцентрических).

Изохромосомные мутации — образование одинаковых, но зеркальных фрагментов двух разных хромосом, содержащих одни и те же наборы генов. Это происходит в результате поперечного разрыва хроматид через центромеры (отсюда другое название — центрическое соединение).

Хромосомные болезни

Хромосомные болезни – наследственные заболевания, которые обусловлены геномными (изменение числа хромосом) и хромосомными (изменение структуры хромосом) мутациями. Хромосомные болезни, как правило, не передаются потомству и встречаются в семьях как спорадичные случаи.

Основная причина возникновения хромосомных болезней – нерасхождение хромосом в мейозе во время гаметогенеза у одного из родителей. Они возникают вследствие мутаций в гаметах одного из здоровых родителей или в зиготе на первых стадиях дробления. Если мутация, возникшая в гаметах, – это полная форма болезни, то на стадии дробления зиготы – мозаичная форма болезни. В отличие от генных, хромосомные мутации охватывают значительно больший объем генетического материала и характеризуются множественными поражениями. Именно они вызывают около 45 % случаев гибели плода после имплантации и 60-70 % – 2-4-недельных выкидышей. Больные хромосомными болезнями занимают почти 25 % госпитализированных пациентов в мире.

Хромосомные заболевания, обусловленные изменением количества и структуры аутосом

Синдром Дауна (трисомия 21).

Синдро́м Да́уна (трисомия по хромосоме 21) — одна из форм геномной патологии, при которой чаще всего кариотип представлен 47 хромосомами вместо нормальных 46, поскольку хромосомы 21-й пары, вместо нормальных двух, представлены тремя копиями (трисомия). Кариотипы больных – 47, ХХ, 21+ или 47, ХУ, 21+. Частота 1:1100, а в некоторых регионах – 1:700-1:800 новорожденных. Риск рождения детей с синдромом Дауна возрастает с возрастом матери. На частоту их рождения не влияют половые, расовые, географические и популяционные отличия. Комплекс врожденных пороков развития, характерных для синдрома Дауна, обуславливает клиническую картину “все дети из одной семьи”.

Существует ещё две формы данного синдрома: транслокация хромосомы 21 на другие хромосомы (чаще на 15, реже на 14, ещё реже на 21, 22 и Y-хромосому) — 4 % случаев, и мозаичный вариант синдрома — 5 %. Транслокационная форма не зависит от возраста матери, поэтому есть высокий риск повторного рождения больного ребенка в семье.

Синдром получил название в честь английского врача Джона Дауна впервые описавшего его в 1866 году. Связь между происхождением врождённого синдрома и изменением количества хромосом была выявлена только в 1959 году французским генетиком Жеромом Леженом.

Синдром Патау (трисомия-13).

Встречается с частотой 1:7000-1:14000. Имеются два цитогенетических варианта синдрома Патау: простая трисомия и робертсоновская транслокация. Другие цитогенетические варианты (мозаицизм, изохромосома, неробертсоновские транслокации) обнаружены, но они встречаются крайне редко. Клиническая и патологоанатомическая картины простых трисомных форм и транслокационных не различается. 75 % случаев трисомии хромосомы 13 обусловлено появлением дополнительной хромосомы 13. Между частотой возникновения синдрома Патау и возрастом матери прослеживается зависимость, хотя и менее строгая, чем в случае синдрома Дауна. 25 % случаев СП — следствие транслокации с вовлечением хромосом 13-й пары, в том числе в трех из четырёх таких случаев мутация de novo. В четверти случаев транслокация с вовлечением хромосом 13-й пары имеет наследственный характер с возвратным риском 14 %.

Соотношение полов при синдроме Патау близко к 1:1. Дети с синдромом Патау рождаются с истинной пренатальной гипоплазией (на 25 — 30 % ниже средних величин), которую нельзя объяснить небольшой недоношенностью (средний срок беременности 38,5 недель).

Клинические диагностические признаки: щели верхней губы и неба («заячья губа» и «волчья пасть»), уменьшенный объем черепа, перекошенный, низкий лоб, микрофтальмия, анофтальмия (отсутствие одного или обеих глазных яблок), переносица запавшая, деформированные ушные раковины, полидактилия; врожденные пороки сердца, других внутренних органов. Большинство детей умирает в первые недели или месяцы.

Однако некоторые больные живут в течение нескольких лет. Более того, в развитых странах отмечаются тенденция увеличения продолжительности жизни больных синдромом Патау до 5 лет (около 15 % детей) и даже до 10 лет (2 — 3 % детей). Оставшиеся в живых страдают глубокой идиотией.

Решающим в диагностике является цитогенетическое исследования.

Исправить хромосомные нарушения невозможно. Комплексная работа группы различных специалистов заключается в постоянном контроле за состоянием здоровья больного и поддержке семьи.

Синдром Эдвардса (трисомия-18).

Синдром Э́двардса (синдром трисомии 18) — хромосомное заболевание, характеризуется комплексом множественных пороков развития и трисомией 18 хромосомы. Описан в 1960 году Джоном Эдвардсом (John H. Edwards). Популяционная частота примерно 1:7000. Дети с трисомией 18 чаще рождаются у пожилых матерей, взаимосвязь с возрастом матери менее выражена, чем в случаях трисомии хромосомы 21 и 13. Для женщин старше 45 лет риск родить больного ребёнка составляет 0,7 %. Девочки с синдромом Эдвардса рождаются в три раза чаще мальчиков.

Кариотип 47, ХХ, 18+ или 47, ХУ, 18+. Соотношения больных мальчиков и девочек равняется 1:3. Дети с трисомией 18 рождаются с низким, в среднем 2177 г. весом. При этом длительность беременности — нормальная или даже превышает норму. Фенотипические проявления синдрома Эдвардса многообразны. Чаще всего возникают аномалии мозгового и лицевого черепа, мозговой череп имеет долихоцефалическую форму. Нижняя челюсть и ротовое отверстие маленькие. Глазные щели узкие и короткие. Ушные раковины деформированы и в подавляющем большинстве случаев расположены низко, несколько вытянуты в горизонтальной плоскости. Мочка, а часто и козелок отсутствуют. Наружный слуховой проход сужен, иногда отсутствует. Грудина короткая, из-за чего межреберные промежутки уменьшены и грудная клетка шире и короче нормальной. В 80 % случаев наблюдается аномальное развитие стопы: пятка резко выступает, свод провисает (стопа-качалка), большой палец утолщен и укорочен. Из дефектов внутренних органов наиболее часто отмечаются пороки сердца и крупных сосудов: дефект межжелудочковой перегородки, аплазии одной створки клапанов аорты и лёгочной артерии. У всех больных наблюдаются гипоплазия мозжечка и мозолистого тела, изменения структур олив, выраженная умственная отсталость, снижение мышечного тонуса, переходящее в повышение со спастикой.

Клинический и даже патологоанатомический диагноз синдрома сложно установить. Поэтому во всех случаях показано цитогенетическое исследования.

Синдром «кошачьего крика» (делеция короткого плеча 5-й хромосомы)

Синдром «кошачьего крика» связан с делецией короткого плеча 5-й хромосомы. Впервые описан Дж. Леженом в 1963 г. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Однако с возрастом этот крик исчезает.

Хромосомные болезни, обусловленные изменением количества половых хромосом

Синдром Шерешевского-Тернера (моносомия Х).

Впервые эта болезнь как наследственная была описана в 1925 г. Н. А. Шерешевским, который считал, что она обусловлена недоразвитием половых желёз и передней доли гипофиза и сочетается с врождёнными пороками внутреннего развития. В 1938 г. Тёрнер выделил характерную для этого симптомокомплекса триаду симптомов: половой инфантилизм, кожные крыловидные складки на боковых поверхностях шеи и деформацию локтевых суставов. В России этот синдром принято называть синдромом Шерешевского — Тёрнера. Этиология заболевания (моносомия по Х-хромосоме) была раскрыта Ч. Фордом в 1959 г.

Нарушение формирования половых желёз при синдроме Тёрнера обусловлено отсутствием или структурными дефектами одной половой хромосомы (X-хромосомы).

У эмбриона первичные половые клетки закладываются почти в нормальном количестве, но во второй половине беременности происходит их быстрая инволюция (обратное развитие), и к моменту рождения ребёнка количество фолликулов в яичнике по сравнению с нормой резко уменьшено или они полностью отсутствуют. Это приводит к выраженной недостаточности женских половых гормонов, половому недоразвитию, у большинства больных — к первичной аменорее (отсутствию менструаций) и бесплодию.

Кариотип 45,(X0)=70% / 46,(XX)=30% — мозаичная форма синдрома Тёрнера.

Наиболее важны изменения костно-суставной системы — укорочение пястных и плюсневых костей, аплазия (отсутствие) фаланг пальцев, деформация лучезапястного сустава, остеопороз позвонков. Рентгенологически при синдроме Тёрнера турецкое седло и кости свода черепа обычно не изменены. Отмечаются пороки сердца и крупных сосудов (коарктация аорты, незаращение боталлова протока, незаращение межжелудочковой перегородки, сужение устья аорты), пороки развития почек. Проявляются рецессивные гены дальтонизма и других заболеваний.

Синдром Шерешевского-Тёрнера встречается много реже, чем трисомия Х, синдром Клайнфельтера (ХХУ, ХХХУ), а также ХУУ, что указывает на наличие сильного отбора против гамет, не содержащих половых хромосом, или против зигот ХО. Это предположение подтверждается достаточно часто наблюдемоймоносомией Х среди спонтанно абортированных зародышей. В связи с этим допускается, что выжившие зиготы ХО являются результатом не мейотического, а митотического нерасхождения, или утраты X-хромосомы на ранних стадиях развития. Моносомии УО у человека не обнаружено. Популяционная частота 1:1500. Кариотип 45,Х0. В клетках отсутствуют тельца полового хроматина.

Клинические диагностические признаки: женский фенотип; низкий рост, короткая шея с латеральными складками кожи (шея сфинкса), низкая граница роста волс на затылке, грудная клетка щитообразной формы с широко расставленными сосками, дисгенезия гонад, первичная аменорея, бесплодие.

Отставание больных с синдромом Тёрнера в физическом развитии заметно уже с рождения. Примерно у 15 % больных задержка наблюдается в период полового созревания. Для доношенных новорождённых характерна малая длина (42—48 см) и масса тела (2500—2800 г и менее). Характерными признаками синдрома Тёрнерапри рождении являются избыток кожи на шее и другие пороки развития, особенно костно-суставной и сердечнососудистой систем, «лицо сфинкса», лимфостаз(застой лимфы, клинически проявляющийся крупными отёками). Для новорождённого характерны общее беспокойство, нарушение сосательного рефлекса, срыгивание фонтаном, рвота. В раннем возрасте у части больных отмечают задержку психического и речевого развития, что свидетельствует о патологии развития нервной системы. Наиболее характерным признаком является низкорослость. Рост больных не превышает 135—145 см, масса тела часто избыточна.

Синдром дисомии по Y-хромосоме.

Синдром дисомии по Y-хромосоме (47,XYY) встречается с частотой 1:1000 новорождённых мальчиков. Большинство мужчин с таким набором хромосом не отличаются от нормальных индивидов по физическому и умственному развитию, имеют рост немного выше среднего. Заметных отклонений ни в половом развитии, ни в гормональном статусе, ни в плодовитости у большинства XYY-индивидов нет. Не исключены некоторые особенности поведения таких лиц: при соответствующих условиях они склонны к агрессивным и даже криминальным поступкам.

Синдром дисомии по Y-хромосоме впервые описали A.A. Сандберг с соавторами в 1961 г., кариотип больных с этим заболеванием — 47, ХУУ.

Частота этого синдрома среди новорожденных мальчиков составляет 1:1000 и возрастает до 10 % у высокорослых мужчин (выше 200 см).

У большинства больных отмечается ускорение темпов роста в детском возрасте. Средний рост у взрослых мужчин составляет 186 см. В большинстве случаев по физическому и умственному развитию больные не отличаются от нормальных индивидов. Заметных отклонений в половой и в эндокринной сфере нет. В 30 — 40 % случаев отмечаются определенные симптомы — грубые черты лица, выступающие надбровные дуги и переносица, увеличенная нижняя челюсть, высокое нёбо, аномальный рост зубов с дефектами зубной эмали, большие ушные раковины, деформация коленных и локтевых суставов. Интеллект или негрубо снижен, или в норме. Характерны эмоционально-волевые нарушения: агрессивность, взрывчатость, импульсивность. В то же время для этого синдрома характерны подражательность, повышенная внушаемость, причем больные наиболее легко усваивают негативные формы поведения. Заметных отклонений в половом и гормональном статусе не выявляется. Характерна повышенная агрессивность.

Синдром Клайнфельтера (дополнительная Х-хромосома у мужчин)

Синдром Клайнфельтера – генетическое заболевание, характеризующееся наличием дополнительной женской половой хромосомы Х (одной или нескольких) в мужском кариотипе ХУ, и проявляющееся, в первую очередь, эндокринными нарушениями по типу первичного мужского гипогонадизма (недостаточности образования половых гормонов непосредственно в мужских половых железах – яичках). По медицинской традиции синдром получил свое название в честь автора, в 1942 году впервые описавшего клиническую картину патологии. Кариотип при синдроме Клайнфельтера Как известно, генетический набор человека насчитывает 46 хромосом, из которых 22 пары называются соматическими, а 23-я – половая, несущая гены, определяющие в дальнейшем принадлежность индивида к мужскому или женскому полу. Женщины имеют пару половых хромосом ХХ, а мужчины – ХУ. Особенностью синдрома Клайнфельтера является обязательное наличие мужской У хромосомы, поэтому, несмотря на дополнительные Х хромосомы, пациенты всегда являются мужчинами. По количеству дополнительных Х хромосом различают следующие варианты синдрома Клайнфельтера: 1. Наиболее часто встречающийся классический синдром Клайнфельтера: 47ХХУ. 2. 48ХХХУ. 3. 49ХХХХУ. Кроме того, к синдрому Клайнфельтера также относят мужские кариотипы, включающие, помимо дополнительных Х хромосом, дополнительную У хромосому – 48ХХУУ. И наконец, среди пациентов с синдромом Клайнфельтера встречаются лица с мозаичным кариотипом 46ХУ/47ХХУ (часть клеток имеет нормальный хромосомный набор). Распространенность заболевания Синдром Клайнфельтера является одним из наиболее распространенных генетических заболеваний. Около 0,2% мужского населения Земли страдает этой патологией. Кроме того, синдром Клайнфельтера – третья по распространенности эндокринная патология у мужчин (после сахарного диабета и гиперфункции щитовидной железы). На сегодняшний день синдром Клайнфельтера является наиболее частой причиной врожденного нарушения репродуктивной функции у мужчин. По статистическим данным, около половины случаев синдрома Клайнфельтера остаются нераспознанными. Нередко такие пациенты обращаются за помощью по поводу различных нарушений (бесплодие, нарушения эректильной функции, гинекомастия, остеопороз и др.), однако основное заболевание остается недиагностированным.

Источник

Поделиться с друзьями
admin
Значения слов и выражений
Adblock
detector